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Abstract—Javanese script is one of Indonesia's cultural heritages 

that are increasingly rarely used today. The difficulty of 

recognizing the shapes of letters, let alone writing them, is the 

main obstacle in using the Hanacaraka script. This research 

offers an alternative to Hanacaraka script recognition using a 

combination of image feature extraction and machine learning, 

where we utilize a pre-trained SquzeeNet model and Multilayer 

Backpropagation algorithm. Of the 18 models built using ReLu, 

Sigmoid, and Tanh activation functions, we found that the Tanh 

activation function, using the combination of 50-50-100 neuron 

configuration and 25 epochs, was the most optimal function used 

to classify the training data with accuracy, precision, and recall 

values of 93.8%. Meanwhile, the Tanh activation function, using 

the 50-100-50 neuron configuration and 50 epochs, is the most 

optimal function to classify the testing data, with accuracy, 

precision, and recall values of 89.1%, 89.5%, and 89.5%. All 

built models show a training and testing performance ratio below 

10%. From this result, we conclude that all models have good 

reliability in the training and testing classification process. 
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I. INTRODUCTION 

A group of scripts known as Hanacaraka (carakan) was 

developed from the first five series of letters in the Javanese 

alphabet and is used extensively on the islands of Java and 

Bali [1]. The Hanacaraka script is in danger of becoming 

extinct due to its lack of use in modern times, particularly in 

visual communication media [2]. The difficulty of 

differentiating and writing the letters in the Hanacaraka script 

is the prime reason for its lack of usage by the Indonesian 

people [3]. In this study, we identify the Hanacaraka script 

using a machine learning approach by using digital images as 

an alternative way to recognize and re-introduce it to the 

public. 

Some studies have proven the performance of machine 

learning in digital image-based object recognition: the cat 

breed classification using the Support Vector Machine (SVM) 

and Naive Bayes (NB) algorithms, with accuracy values of 

88.4% and 79.5% [4]; the breast cancer classification using 

the Multilayer Perceptron (MLP) and SVM algorithm, with 

the highest accuracy value of 97.7% [5]; signature 

identification using the K-Nearest Neighbors (K-NN) 

algorithm, with 96.7% accuracy [6].  

Feature extraction is a crucial step in digital image-based 

object recognition since the extracted features serve as the 

data for machine learning algorithms to recognize the digital 

image's object. In this research, we use a pre-trained model-

based feature extraction to extract features in the image of 

Hanacaraka letters to be used as a dataset in the classification 

process using machine learning algorithms. A pre-trained 

model is a model that has been trained in advance using a 

large amount of data so it can classify using fewer data. 

SqueezeNet is a reliable pre-trained Convolutional Neural 

Network (CNN) model in training digital image-based object 

recognition, with the same accuracy as the AlexNet model [7]. 

Several transfer learning-based studies used this model in their 

research, such as in the Fundus classification with a 

combination of the Gradient Descent algorithm [8], the 

combination with Support Vector Machine (SVM) and Naive 

Bayes algorithms in the face mask classification [9], the maize 

leaf disease classification with the combination of Stochastic 

Gradient Descent (SGD) algorithm [10], the vegetable and 

fruit image classification in pair with the Linear Discriminant 

Analysis (LDA) [11], and a combination with MLP for 

COVID-19 diagnosis [12]. Based on the compatibility shown 

by this model with various types of machine learning 

algorithms, we choose SqueezeNet as a model for feature 

extraction of Hanacaraka script images and then transfer the 

results the Backpropagation algorithm as classification 

datasets. 

Backpropagation is a machine learning algorithm with a back-

passing ability to correct errors in the classification process 

using its three layers: the input layers, the hidden layers, and 

the output layers [13]. Backpropagation is a widely utilized 

technique in classification research, as demonstrated in the 

study about signature image identification with 83% accuracy 

[14], the white blood and lymphoblast cells classification with 

91.43% accuracy [15], and the eyeball movement patterns 

classification with 88.24% accuracy [16]. Backpropagation 

algorithms that use three or more hidden layers are known as 

Multilayer Backpropagation, and neural networks, such as the 



Multilayer Perceptron, use it in their architecture [17]. 

Multilayer Backpropagation has an advantage in terms of a 

repeated weight modification process in each hidden layer, 

resulting in a more accurate weight calculation [18]. We 

choose this approach as a combination with the SqueezeNet 

model. 

The combination of SquezeeNet and MB in this study 

produces 18 models, where each model uses different 

activation functions, namely ReLu, Tanh, and Sigmoid. We 

also aim to analyze the best epoch and neuron configuration 

using the combination of 25 and 50 epochs and 50-50-100, 

50-100-50, and 100-50-50 neuron configurations. We then 

analyze the performance of these 18 models using the 10-fold 

cross-validation to produce accuracy, precision, and recall 

values. Based on these three values, we choose the best and 

worst models in classifying the Hanacaraka script based on 

the dataset generated from the feature extraction process using 

the SquezeeNet model. 

 

II. METHODS 

A. Dataset 

In this research, we use data in the form of digital images of 

handwritten Hanacaraka letters obtained from the GitHub site 

[19]. Figure 1 shows the sample images from each of the 

Hanacaraka script letters. 

 

 

Fig. 1 Hancaraka Letters Sample 

Figure 1 shows an example of the 20 letters in the Hanacaraka 

script used in this study. Each letter has 160 pictures, which 

we split in half by an 80:20 ratio to provide 128 photos for 

training data and 32 images for testing data. 

Previous research has done some classification using this 

Hanacaraka script, such as applying a Convolutional Neural 

Network (CNN), with the highest accuracy generated value of 

86.68% [20], using the Backpropagation algorithm with the 

best accuracy value of 77% [21], and implementing the 

Backpropagation algorithm, with an accuracy up to 90% [22]. 

We use the images in the dataset to train and test Hanacaraka 

script recognition, using a combination of SqueezeNet and 

Backpropagation algorithms to see if we can get better results. 

B. SquezeeNet 

SqueezeNet is a CNN architecture whose dimensionality 

reduction method reduces the size of the activation map from 

3x3 to 1x1 in the convolution layer [23]. This pre-trained 

CNN model can produce a base network output for class 

prediction at the final layer level [24]. The SqueezeNet 

architecture, shown in Figure 2, consists of fire basic module 

stacks, the hybrid kernel 1x1 and 3x3 in the expansion layer, 

and a 1x1 convolution kernel, with the feature map output the 

size of the original image [25]. 

 

Fig. 2 SqueezeNet Architecture 

Some research has employed SqueezeNet as a feature 

extractor in image classification, as seen in Parkinson's 

disease detection, with an accuracy of 90% [26], in production 

plants' surface defect detection, with an average MAE of 

0.017533 [27], and in hand and gesture detection, with a 

precision of 84.1% [28]. 

In this research, we employ the SqueezeNet architecture in 

extracting the Hanacaraka script images to produce 1000 

features as the dataset. Table I shows the extracted feature 

samples from the training data, while Table II is from the 

testing data. 

TABLE I 

TRAINING DATA SAMPLES 

n0 

- 

n994 

n995 n996 n997 n998 n999 Script 

… 7.789 8.428 2.759 2.77 11.785 ba 

… 0.622 3.43 1.238 3.479 5.649 ca 

… 0.844 2.192 0.363 4.169 6.8004 da 

… 4.074 5.728 0.271 5.044 8.307 dha 

… -0.209 1.193 0.865 3.817 1.4674 ga 

… 1.89 2.151 -0.981 4.925 5.576 ha 

… 1.334 1.981 -0.23 4.594 6.111 ja 

… 1.093 3.042 -0.327 5.585 4.112 ka 

… 1.619 3.285 -0.598 5.219 6.237 la 

… -0.03 2.638 0.105 3.205 7.382 ma 

… 1.324 1.231 -0.412 3.355 4.908 na 

… 0.837 1.228 -0.418 2.855 6.675 nga 

… 1.129 3.798 -0.733 4.422 6.458 nya 



… 0.798 2.661 0.058 3.891 5.552 pa 

… 1.439 2.145 -1.28 3.469 3.889 ra 

… 0.052 3.133 -0.049 3.931 5.775 sa 

… -0.097 3.588 0.546 4.107 3.189 ta 

… 1.033 2.568 -0.372 2.519 6.0722 tha 

… 0.145 2.835 0.732 3.236 5.871 wa 

… 0.927 4.159 0.2111 3.785 8.115 ya 

From Table I above, the feature extraction with the 

SqueezeNet produces n0, n1, ...., and n999 attributes used in 

the training data with the combination of the script target. In 

Table II, the feature extraction with the SqueezeNet also 

produces n0, n1, ...., and n999 attributes used in the testing 

data with the combination of the script target. 

TABLE II 

TESTING DATA SAMPLES 

n0 

- 

n994 

n995 n996 n997 n998 n999 Script 

… 3.095 5.299 -1.464 3.904 5.688 ba 

… 1.195 4.792 -0.410 3.521 6.581 ca 

… 3.019 5.603 -1.401 4.771 8.099 da 

… 1.834 6.815 0.346 4.616 6.571 dha 

… 1.212 1.790 -0.007 5.463 5.357 ga 

… 3.506 6.638 -1.247 5.249 4.778 ha 

… 0.641 0.259 -0.059 5.932 4.567 ja 

… 2.926 3.849 -0.854 6.119 2.872 ka 

… 0.749 1.058 0.203 5.087 3.680 la 

… 4.731 11.898 1.748 -0.478 15.042 ma 

… 4.364 4.722 -1.870 4.669 6.802 na 

… 0.785 0.327 -1.363 1.564 6.056 nga 

… 4.239 7.427 -0.300 4.969 4.254 nya 

… 1.877 1.049 -0.544 3.745 6.410 pa 

… 4.946 2.053 -2.063 4.439 5.940 ra 

… 2.832 4.664 -1.318 5.157 5.569 sa 

… 1.341 1.027 0.271 4.054 4.610 ta 

… 0.692 2.094 -1.598 3.325 5.282 tha 

… 2.405 4.585 -0.923 3.980 6.934 wa 

… 0.352 2.896 0.321 4.615 4.095 ya 

C. Model Configuration 

Finding an optimal activation function for a specific model in 

a neural network is a core task to improve the model's 

performance [29]. In multilayer neural networks, activation 

functions, such as ReLu, Sigmoid, and Tanh, play a crucial 

role in controlling the output response of the neurons [30].  

In this research, we implement three activation functions in 

the models, ReLu, Sigmoid, and Tanh, in limiting the neuron 

output by using equations (1) to (3) [31]. 

𝑓(𝑥)𝑅𝑒𝐿𝑢 = 𝑚𝑎𝑥(0, 𝑥) {
𝑥,
0,

𝑖𝑓 𝑥 > 0
𝑖𝑓 𝑥 ≤ 0

 (1) 

𝑓(𝑥)𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =
1

𝑒−𝑥
 (2) 

𝑓(𝑥)𝑇𝑎𝑛ℎ =
2

1+𝑒−2𝑥 − 1 (3) 

We employ three hidden layers with a combination of 50-50-

100, 50-100-50, and 100-50-50 neuron numbers for all 

models. While the MB-R model uses the ReLu activation 

function, the MB-S, and the MB-T use the Sigmoid and Tanh 

activation function, respectively. Table IV shows the model's 

configuration used in this research. 

TABLE IV 

MODEL’S CONFIGURATION 

Model Configuration 

MB-R1 

Activation Function: ReLu 

Neuron: 50-50-100 
Epoch: 25 

MB-R2 
Activation Function: ReLu 
Neuron: 50-50-100 
Epoch: 50 

MB-R3 
Activation Function: ReLu 
Neuron: 50-100-50 

Epoch: 25 

MB-R4 
Activation Function: ReLu 
Neuron: 50-100-100 
Epoch: 50 

MB-R5 
Activation Function: ReLu 
Neuron: 100-50-50 
Epoch: 25 

MB-R6 
Activation Function: ReLu 
Neuron: 100-50-50 
Epoch: 50 

MB-S1 
Activation Function: Sigmoid 
Neuron: 50-50-100 
Epoch: 25 

MB-S2 
Activation Function: Sigmoid 
Neuron: 50-50-100 
Epoch: 50 

MB-S3 
Activation Function: Sigmoid 
Neuron: 50-100-50 
Epoch: 25 

MB-S4 

Activation Function: Sigmoid 

Neuron: 50-100-100 
Epoch: 50 

MB-S5 
Activation Function: Sigmoid 
Neuron: 100-50-50 
Epoch: 25 

MB-S6 
Activation Function: Sigmoid 
Neuron: 100-50-50 

Epoch: 50 

MB-T1 
Activation Function: Tanh 
Neuron: 50-50-100 
Epoch: 25 

MB-T2 
Activation Function: Tanh 
Neuron: 50-50-100 

Epoch: 50 

MB-T3 
Activation Function: Tanh 
Neuron: 50-100-50 
Epoch: 25 

MB-T4 
Activation Function: Tanh 
Neuron: 50-100-50 
Epoch: 50 

MB-T5 
Activation Function: Tanh 
Neuron: 100-50-50 
Epoch: 25 

MB-T6 
Activation Function: Tanh 
Neuron: 100-50-50 
Epoch: 50 



D. Evaluation 

We use 10-fold cross-validation to evaluate each model's 

performance in classifying the Hancaraka script. The 

accuracy, precision, and recall values gained using equations 

(4) to (6) will be the reference in ranking the models from best 

to worst [32]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6) 

We will use the accuracy, precision, and recall values to 

analyze the activation function's performance and the neuron 

placement in the training and testing process. 

By comparing the training and testing data performance, we 

calculate the difference percentage to analyze the reliability of 

the models. We use a standard of 10% as a threshold for the 

comparison. If the difference percentage is lower than 10%, 

we conclude that the model produced is reliable enough to 

classify the given data. 

III. RESULTS 

Using the extracted feature from the Hanacaraka script 

images, we classify the dataset using the built model, which 

produced a performance result from each model, displayed in 

Table IV for the training data and Table V for the testing data. 

TABLE IV 

PERFORMANCE RESULT FOR TRAINING DATA 

Model Accuracy Precision Recall 

MB-R1 0.909 0.909 0.909 

MB-R2 0.919 0.919 0.919 

MB-R3 0.918 0.919 0.918 

MB-R4 0.921 0.921 0.921 

MB-R5 0.912 0.913 0.912 

MB-R6 0.920 0.920 0.920 

MB-S1 0.521 0.489 0.521 

MB-S2 0.740 0.740 0.740 

MB-S3 0.590 0.559 0.590 

MB-S4 0.745 0.749 0.745 

MB-S5 0.747 0.748 0.747 

MB-S6 0.838 0.834 0.838 

MB-T1 0.927 0.928 0.927 

MB-T2 0.938 0.938 0.938 

MB-T3 0.927 0.927 0.927 

MB-T4 0.936 0.936 0.936 

MB-T5 0.926 0.927 0.926 

MB-T6 0.934 0.934 0.934 

From the result shown in Table IV, we get the best 

performance from the MB-T2 model, with an accuracy value 

of 93.8%, a precision value of 93.8%, and a recall value of 

93.8%. This result shows that in the classification of the 

training data, the Tanh activation function works best in the 

50-50-100 neurons configuration and with 25 epochs. 

 

 

TABLE IV 

PERFORMANCE RESULT FOR TESTING DATA 

Model Accuracy Precision Recall 

MB-R1 0.831 0.857 0.831 

MB-R2 0.842 0.865 0.842 

MB-R3 0.872 0.881 0.872 

MB-R4 0.881 0.888 0.881 

MB-R5 0.825 0.84 0.827 

MB-R6 0.827 0.841 0.827 

MB-S1 0.491 0.423 0.491 

MB-S2 0.711 0.716 0.711 

MB-S3 0.623 0.606 0.623 

MB-S4 0.72 0.742 0.72 

MB-S5 0.68 0.686 0.68 

MB-S6 0.781 0.791 0.781 

MB-T1 0.88 0.89 0.88 

MB-T2 0.884 0.894 0.884 

MB-T3 0.872 0.879 0.872 

MB-T4 0.891 0.895 0.891 

MB-T5 0.872 0.876 0.872 

MB-T6 0.875 0.88 0.875 

From the result shown in Table V, we get the best 

performance from the MB-T4 model, with an accuracy value 

of 89.1%, a precision value of 89.5%, and a recall value of 

89.1%. This result shows that in the classification of the 

testing data, the Tanh activation function works best in the 50-

100-50 neurons configuration and with 50 epochs. 

Next, we calculate the model's average performance for 

training data classification using the epoch's variation, 

resulting in data displayed in Table VII and Table VIII. 

TABLE VII 

AVERAGE TRAINING PERFORMANCE PER EPOCH 

Activation 

Function 

Epoch Accuracy Precision Recall 

ReLu 
25 0.913 0.914 0.913 

50 0.920 0.920 0.920 

Sigmoid 
25 0.619 0.599 0.619 

50 0.774 0.774 0.774 

Tanh 
25 0.927 0.927 0.927 

50 0.936 0.936 0.936 

From the result shown in Table VII, we get the best 

performance for the ReLu activation function yields using the 

50 epoch, with an accuracy value of 92%, a precision value of 

92%, and a recall value of 92%. This result shows that the 

ReLu activation function works best with 50 epochs in the 

training process. 

From the result shown in Table VII, we get the best 

performance for the Sigmoid activation function yields using 

the 50 epoch, with an accuracy value of 77.4%, a precision 

value of 77.4%, and a recall value of 77.4%. This result shows 

that the Sigmoid activation function works best with 50 

epochs in the training process. 

From the result shown in Table VII, we get the best 

performance for the Tanh activation function yields using the 

50 epoch, with an accuracy value of 93.6%, a precision value 

of 93.6%, and a recall value of 93.6%. This result shows that 



the Tanh activation function works best with 50 epochs in the 

training process. 

From the above results, we found that the best epoch to use in 

the Hanacaraka script classification using the training data is 

50. We also see that as the epoch value increases, the 

classification performance of the training data of each 

activation function improves. 

Next, we calculate the model's average performance for 

testing data classification using the epoch's variation, resulting 

in data displayed in Table VIII. 

TABLE VIII 

AVERAGE TESTING PERFORMANCE PER EPOCH 

Activation 

Function 

Epoch Accuracy Precision Recall 

ReLu 
25 0.843 0.859 0.843 

50 0.850 0.865 0.850 

Sigmoid 
25 0.598 0.572 0.598 

50 0.737 0.750 0.737 

Tanh 
25 0.875 0.882 0.875 

50 0.883 0.890 0.883 

From the result shown in Table VIII, we get the best 

performance for the ReLu activation function yields using the 

50 epoch, with an accuracy value of 85%, a precision value of 

86.5%, and a recall value of 85%. This result shows that the 

ReLu activation function works best with 50 epochs in the 

testing process. 

From the result shown in Table VIII, we get the best 

performance for the Sigmoid activation function yields using 

the 50 epoch, with an accuracy value of 73.7%, a precision 

value of 75%, and a recall value of 73.7%. This result shows 

that the Sigmoid activation function works best with 50 

epochs in the testing process. 

From the result shown in Table VIII, we get the best 

performance for the Tanh activation function yields using the 

50 epoch, with an accuracy value of 88.73 a precision value of 

89%, and a recall value of 88.3%. This result shows that the 

Tanh activation function works best with 50 epochs in the 

testing process. 

From the above results, we found that the best epoch to use in 

the Hanacaraka script classification using the testing data is 

50. We also see that as the epoch value increases, the 

classification performance of the testing data of each 

activation function improves. 

Next, we calculate the model's average performance for 

testing data classification using the neuron's configuration, 

resulting in data displayed in Table IX. 

TABLE IX 

AVERAGE TRAINING PERFORMANCE PER NEURONS 

Activation 

Function 

Neurons Accuracy Precision Recall 

ReLu 

50-50-100 0.914 0.914 0.914 

50-100-50 0.920 0.920 0.920 

100-50-50 0.916 0.917 0.916 

Sigmoid 

50-50-100 0.631 0.615 0.631 

50-100-50 0.668 0.654 0.668 

100-50-50 0.793 0.791 0.793 

Tanh 

50-50-100 0.933 0.933 0.933 

50-100-50 0.932 0.932 0.932 

100-50-50 0.930 0.931 0.930 

From the result shown in Table IX, we get the best 

performance for the ReLu activation function yields using the 

50-100-50 neuron’s configuration, with an accuracy value of 

92%, a precision value of 92%, and a recall value of 92%. 

This result shows that the ReLu activation function works best 

with the 50-100-50 neuron’s configuration in the training 

process. 

From the result shown in Table VII, we get the best 

performance for the Sigmoid activation function yields using 

the 100-50-50 neuron’s configuration, with an accuracy value 

of 79.3%, a precision value of 79.1%, and a recall value of 

79.3%. This result shows that the Sigmoid activation function 

works best with 100-50-50 neuron’s configuration in the 

training process. 

From the result shown in Table IX, we get the best 

performance for the Tanh activation function yields using the 

50-50-100 neuron’s configuration, with an accuracy value of 

93.3%, a precision value of 93.3%, and a recall value of 

93.3%. This result shows that the Tanh activation function 

works best with 50-50-100 neuron’s configuration in the 

training process. 

Using the training data, we discovered that each activation 

function performs better with distinct neuron configurations in 

the Hanacaraka script classification. 

Next, we calculate the model's average performance for 

testing data classification using the neuron's configuration, 

resulting in data displayed in Table X. 

TABLE X 

AVERAGE TESTING PERFORMANCE PER NEURONS 

Activation 

Function 

Neurons Accuracy Precision Recall 

ReLu 

50-50-100 0.837 0.861 0.837 

50-100-50 0.877 0.885 0.877 

100-50-50 0.826 0.841 0.827 

Sigmoid 

50-50-100 0.601 0.570 0.601 

50-100-50 0.672 0.674 0.672 

100-50-50 0.731 0.739 0.731 

Tanh 

50-50-100 0.882 0.892 0.882 

50-100-50 0.882 0.887 0.882 

100-50-50 0.874 0.878 0.874 

From the result shown in Table X, we get the best 

performance for the ReLu activation function yields using the 

50-100-50 neuron’s configuration, with an accuracy value of 

87.7%, a precision value of 88.5%, and a recall value of 

87.7%. This result shows that the ReLu activation function 

works best with 50-100-50 neuron’s configuration in the 

testing process. 

From the result shown in Table X, we get the best 

performance for the Sigmoid activation function yields using 

the 100-50-50 neuron’s configuration, with an accuracy value 

of 73.1%, a precision value of 73.9%, and a recall value of 

73.1%. This result shows that the Sigmoid activation function 



works best with 100-50-50 neuron’s configuration in the 

testing process. 

From the result shown in Table X, we get the best 

performance for the Tanh activation function yields using the 

50-50-100 neuron’s configuration, with an accuracy value of 

88.2%, a precision value of 89.2%, and a recall value of 

88.2%. This result shows that the Tanh activation function 

works best with 50-50-100 neuron’s configuration in the 

testing process. 

Using the testing data, we discovered that each activation 

function performs better with distinct neuron configurations in 

the Hanacaraka script classification.. 

Finally, we calculate the difference percentage for training 

and testing data classification result on each model. Table XI 

shows the comparison result with the final reliability 

evaluation. 

TABLE XI 

PERFORMANCE REABILITY 

Model 
Δ 

Accuracy 

Δ 

Precision 

Δ 

Recall 

Reliable 

MB-R1 0.078 0.052 0.078 Yes 

MB-R2 0.077 0.054 0.077 Yes 

MB-R3 0.046 0.038 0.046 Yes 

MB-R4 0.04 0.033 0.04 Yes 

MB-R5 0.087 0.073 0.085 Yes 

MB-R6 0.093 0.079 0.093 Yes 

MB-S1 0.03 0.066 0.03 Yes 

MB-S2 0.029 0.024 0.029 Yes 

MB-S3 0.033 0.047 0.033 Yes 

MB-S4 0.025 0.007 0.025 Yes 

MB-S5 0.067 0.062 0.067 Yes 

MB-S6 0.057 0.043 0.057 Yes 

MB-T1 0.047 0.038 0.047 Yes 

MB-T2 0.054 0.044 0.054 Yes 

MB-T3 0.055 0.048 0.055 Yes 

MB-T4 0.045 0.041 0.045 Yes 

MB-T5 0.054 0.051 0.054 Yes 

MB-T6 0.059 0.054 0.059 Yes 

Table XI shows that all models have less than a 10% 

difference percentage, showing that all the models built have 

enough reliability to classify the Hanacaraka script using the 

given image data and are feasible to be implemented in a 

finished application. 

IV. CONCLUSIONS 

From this research, we acknowledge that using the pre-trained 

SqueezeNet model helps make feature extraction easier. The 

resulting features, numbering 1000, can be transferred to other 

machine learning algorithms, in this case, the Multilayer 

Backpropagation, as the data for the Hanacaraka script 

classification. From the training data classification, we found 

that the Tanh activation function with 25 epochs and  50-50-

100 neuron configuration is the most optimal for this case, 

proven by the highest accuracy (93.8%), precision (93.8%), 

and recall (93.8%) values generated from this model. From 

the testing data classification, we found that the Tanh 

activation function with 50 epochs and  50-100-50 neuron 

configuration is the most optimal for this case, proven by the 

highest accuracy (89.1%), precision (89.5%), and recall 

(89.1%) values generated from this model.On average, the 

ReLu activation function works best with 50 epochs in the 

training process, generating an accuracy, precision, and recall 

values of 92%, respectively. On average, the Sigmoid 

activation function works best with 50 epochs in the training 

process, generating an accuracy, precision, and recall values 

of 77.4%, respectively. On average, the Tanh activation 

function works best with 50 epochs in the training process, 

generating an accuracy, precision, and recall values of 93.6%, 

respectively. Based on the testing data, the ReLu activation 

function performs better using 50 epochs, generating an 

accuracy, precision, and recall values of 85%, 86.5%, and 

85%. The Sigmoid activation function performs better using 

50 epochs in the testing data classification, generating an 

accuracy, precision, and recall values of 73.7%, 75%, and 

73.7%. Meanwhile, the Tanh activation function performs 

better using 50 epochs in the testing data classification, 

generating an accuracy, precision, and recall values of 88.3%, 

89%, and 83.3%. Based on the neuron configuration’s average 

performance, the ReLu activation function yields the best 

performance in the training data classification using the 50-

100-50 neuron configuration, with an accuracy, precision, and 

recall values of 92%, respectively. The Sigmoid activation 

function yields the best performance using the 100-50-50 

neuron configuration, with an accuracy, precision, and recall 

values of 79.3%, 79.1%, and 79.3%. Meanwhile, the Tanh 

activation fuction generates the highest performance value of 

93.3% accuracy, precision, and recall, using the 50-50-100 

neuron configuration. Overall, all models have excellent 

reliability, as shown by the less than 10% difference 

percentage between training and testing classification 

performance. We hope that the findings of this study will 

prompt more research into promoting Indonesian cultural 

heritage in the future to prevent its extinction. 
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	Abstract—Javanese script is one of Indonesia's cultural heritages that are increasingly rarely used today. The difficulty of recognizing the shapes of letters, let alone writing them, is the main obstacle in using the Hanacaraka script. This research ...
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	I. Introduction
	A group of scripts known as Hanacaraka (carakan) was developed from the first five series of letters in the Javanese alphabet and is used extensively on the islands of Java and Bali [1]. The Hanacaraka script is in danger of becoming extinct due to it...
	Some studies have proven the performance of machine learning in digital image-based object recognition: the cat breed classification using the Support Vector Machine (SVM) and Naive Bayes (NB) algorithms, with accuracy values of 88.4% and 79.5% [4]; t...
	Feature extraction is a crucial step in digital image-based object recognition since the extracted features serve as the data for machine learning algorithms to recognize the digital image's object. In this research, we use a pre-trained model-based f...
	SqueezeNet is a reliable pre-trained Convolutional Neural Network (CNN) model in training digital image-based object recognition, with the same accuracy as the AlexNet model [7]. Several transfer learning-based studies used this model in their researc...
	Backpropagation is a machine learning algorithm with a back-passing ability to correct errors in the classification process using its three layers: the input layers, the hidden layers, and the output layers [13]. Backpropagation is a widely utilized t...
	The combination of SquezeeNet and MB in this study produces 18 models, where each model uses different activation functions, namely ReLu, Tanh, and Sigmoid. We also aim to analyze the best epoch and neuron configuration using the combination of 25 and...
	II. METHODS
	A. Dataset
	In this research, we use data in the form of digital images of handwritten Hanacaraka letters obtained from the GitHub site [19]. Figure 1 shows the sample images from each of the Hanacaraka script letters.
	Fig. 1 Hancaraka Letters Sample
	Figure 1 shows an example of the 20 letters in the Hanacaraka script used in this study. Each letter has 160 pictures, which we split in half by an 80:20 ratio to provide 128 photos for training data and 32 images for testing data.
	Previous research has done some classification using this Hanacaraka script, such as applying a Convolutional Neural Network (CNN), with the highest accuracy generated value of 86.68% [20], using the Backpropagation algorithm with the best accuracy va...
	We use the images in the dataset to train and test Hanacaraka script recognition, using a combination of SqueezeNet and Backpropagation algorithms to see if we can get better results.
	B. SquezeeNet
	SqueezeNet is a CNN architecture whose dimensionality reduction method reduces the size of the activation map from 3x3 to 1x1 in the convolution layer [23]. This pre-trained CNN model can produce a base network output for class prediction at the final...
	Fig. 2 SqueezeNet Architecture
	Some research has employed SqueezeNet as a feature extractor in image classification, as seen in Parkinson's disease detection, with an accuracy of 90% [26], in production plants' surface defect detection, with an average MAE of 0.017533 [27], and in ...
	In this research, we employ the SqueezeNet architecture in extracting the Hanacaraka script images to produce 1000 features as the dataset. Table I shows the extracted feature samples from the training data, while Table II is from the testing data.
	TABLE I Training Data Samples
	From Table I above, the feature extraction with the SqueezeNet produces n0, n1, ...., and n999 attributes used in the training data with the combination of the script target. In Table II, the feature extraction with the SqueezeNet also produces n0, n1...
	TABLE II Testing Data Samples
	C. Model Configuration
	Finding an optimal activation function for a specific model in a neural network is a core task to improve the model's performance [29]. In multilayer neural networks, activation functions, such as ReLu, Sigmoid, and Tanh, play a crucial role in contro...
	In this research, we implement three activation functions in the models, ReLu, Sigmoid, and Tanh, in limiting the neuron output by using equations (1) to (3) [31].
	,𝑓,𝑥.-𝑅𝑒𝐿𝑢.=𝑚𝑎𝑥,0,𝑥.,,𝑥,-0,..,𝑖𝑓 𝑥>0-𝑖𝑓 𝑥 ≤0. (1)
	,𝑓,𝑥.-𝑠𝑖𝑔𝑚𝑜𝑖𝑑.=,1-,𝑒-−𝑥.. (2)
	,𝑓,𝑥.-𝑇𝑎𝑛ℎ.=,2-1+,𝑒-−2𝑥..−1 (3)
	We employ three hidden layers with a combination of 50-50-100, 50-100-50, and 100-50-50 neuron numbers for all models. While the MB-R model uses the ReLu activation function, the MB-S, and the MB-T use the Sigmoid and Tanh activation function, respect...
	TABLE IV Model’s Configuration
	D. Evaluation
	We use 10-fold cross-validation to evaluate each model's performance in classifying the Hancaraka script. The accuracy, precision, and recall values gained using equations (4) to (6) will be the reference in ranking the models from best to worst [32].
	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦=,𝑇𝑃+𝑇𝑁-𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁. (4)
	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛=,𝑇𝑃-𝑇𝑃+𝐹𝑃. (5)
	𝑅𝑒𝑐𝑎𝑙𝑙=,𝑇𝑃-𝑇𝑃+𝐹𝑁. (6)
	We will use the accuracy, precision, and recall values to analyze the activation function's performance and the neuron placement in the training and testing process.
	By comparing the training and testing data performance, we calculate the difference percentage to analyze the reliability of the models. We use a standard of 10% as a threshold for the comparison. If the difference percentage is lower than 10%, we con...
	III. RESULTS
	Using the extracted feature from the Hanacaraka script images, we classify the dataset using the built model, which produced a performance result from each model, displayed in Table IV for the training data and Table V for the testing data.
	TABLE IV Performance Result For Training Data
	From the result shown in Table IV, we get the best performance from the MB-T2 model, with an accuracy value of 93.8%, a precision value of 93.8%, and a recall value of 93.8%. This result shows that in the classification of the training data, the Tanh ...
	TABLE IV Performance Result For Testing Data
	From the result shown in Table V, we get the best performance from the MB-T4 model, with an accuracy value of 89.1%, a precision value of 89.5%, and a recall value of 89.1%. This result shows that in the classification of the testing data, the Tanh ac...
	Next, we calculate the model's average performance for training data classification using the epoch's variation, resulting in data displayed in Table VII and Table VIII.
	TABLE VII Average Training Performance Per Epoch
	From the result shown in Table VII, we get the best performance for the ReLu activation function yields using the 50 epoch, with an accuracy value of 92%, a precision value of 92%, and a recall value of 92%. This result shows that the ReLu activation ...
	From the result shown in Table VII, we get the best performance for the Sigmoid activation function yields using the 50 epoch, with an accuracy value of 77.4%, a precision value of 77.4%, and a recall value of 77.4%. This result shows that the Sigmoid...
	From the result shown in Table VII, we get the best performance for the Tanh activation function yields using the 50 epoch, with an accuracy value of 93.6%, a precision value of 93.6%, and a recall value of 93.6%. This result shows that the Tanh activ...
	From the above results, we found that the best epoch to use in the Hanacaraka script classification using the training data is 50. We also see that as the epoch value increases, the classification performance of the training data of each activation fu...
	Next, we calculate the model's average performance for testing data classification using the epoch's variation, resulting in data displayed in Table VIII.
	TABLE VIII Average Testing Performance Per Epoch
	From the result shown in Table VIII, we get the best performance for the ReLu activation function yields using the 50 epoch, with an accuracy value of 85%, a precision value of 86.5%, and a recall value of 85%. This result shows that the ReLu activati...
	From the result shown in Table VIII, we get the best performance for the Sigmoid activation function yields using the 50 epoch, with an accuracy value of 73.7%, a precision value of 75%, and a recall value of 73.7%. This result shows that the Sigmoid ...
	From the result shown in Table VIII, we get the best performance for the Tanh activation function yields using the 50 epoch, with an accuracy value of 88.73 a precision value of 89%, and a recall value of 88.3%. This result shows that the Tanh activat...
	From the above results, we found that the best epoch to use in the Hanacaraka script classification using the testing data is 50. We also see that as the epoch value increases, the classification performance of the testing data of each activation func...
	Next, we calculate the model's average performance for testing data classification using the neuron's configuration, resulting in data displayed in Table IX.
	TABLE IX Average Training Performance Per Neurons
	From the result shown in Table IX, we get the best performance for the ReLu activation function yields using the 50-100-50 neuron’s configuration, with an accuracy value of 92%, a precision value of 92%, and a recall value of 92%. This result shows th...
	From the result shown in Table VII, we get the best performance for the Sigmoid activation function yields using the 100-50-50 neuron’s configuration, with an accuracy value of 79.3%, a precision value of 79.1%, and a recall value of 79.3%. This resul...
	From the result shown in Table IX, we get the best performance for the Tanh activation function yields using the 50-50-100 neuron’s configuration, with an accuracy value of 93.3%, a precision value of 93.3%, and a recall value of 93.3%. This result sh...
	Using the training data, we discovered that each activation function performs better with distinct neuron configurations in the Hanacaraka script classification.
	Next, we calculate the model's average performance for testing data classification using the neuron's configuration, resulting in data displayed in Table X.
	TABLE X Average Testing Performance Per Neurons
	From the result shown in Table X, we get the best performance for the ReLu activation function yields using the 50-100-50 neuron’s configuration, with an accuracy value of 87.7%, a precision value of 88.5%, and a recall value of 87.7%. This result sho...
	From the result shown in Table X, we get the best performance for the Sigmoid activation function yields using the 100-50-50 neuron’s configuration, with an accuracy value of 73.1%, a precision value of 73.9%, and a recall value of 73.1%. This result ...
	From the result shown in Table X, we get the best performance for the Tanh activation function yields using the 50-50-100 neuron’s configuration, with an accuracy value of 88.2%, a precision value of 89.2%, and a recall value of 88.2%. This result sho...
	Using the testing data, we discovered that each activation function performs better with distinct neuron configurations in the Hanacaraka script classification..
	Finally, we calculate the difference percentage for training and testing data classification result on each model. Table XI shows the comparison result with the final reliability evaluation.
	TABLE XI Performance Reability
	Table XI shows that all models have less than a 10% difference percentage, showing that all the models built have enough reliability to classify the Hanacaraka script using the given image data and are feasible to be implemented in a finished applicat...
	IV. Conclusions
	From this research, we acknowledge that using the pre-trained SqueezeNet model helps make feature extraction easier. The resulting features, numbering 1000, can be transferred to other machine learning algorithms, in this case, the Multilayer Backprop...
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