Smart Security in Smart City Using Naïve Bayes and RSA

Junaidi¹, R. Roslina², B.Herawan Hayadi³

^{1,3}Magister of Computer Science, Potensi Utama University JL. KL. Yos Sudarso Km. 6,5 No. 3-A, Medan

²Departement of Computer and Informatics Technology, Politeknik Negeri Medan

JL. Almamater No.1, Padang Bulan, Kec. Medan Baru, Medan

¹junaidy2906@gmail.com ²roslinaich@gmail.com

³b.herawan.hayadi@gmail.com

Abstract— As all major cities adopt the concept of smart cities, concerns arise among the public regarding data security and privacy. The constant threat of attacks on confidentiality, integrity and accessibility of data makes it vulnerable to cyber attacks. The increasing use of IoT devices also increases the potential for cyber attacks that can harm all IoT users. Therefore, it is crucial for city governments to be aware of data security issues related to smart spaces, services, and citizen security, and to provide solutions to existing problems by making maximum policies related to the implementation of smart city concepts. From the above explanation, the author is taking the analysis step with the title "Analysis of Naive Bayes Classifier and Rsa (Rivest Shamir Adleman) Combination in Smart Security in the Implementation of Smart City in Pemko Medan'' where the benefits that can be obtained are to gain deeper understanding of Smart Security level, obtain information about the Smart Securty level, and classify the stage of Smart Securty using the combination of Naive Bayes Classifier and Rsa (Rivest Shamir Adleman) in the implementation of Smart City in Pemko Medan.

Keywords Naïve Bayes Classifier, Rivest Shamir Adleman, Smart Security

I. INTRODUCTION

The existence of a Smart City in Indonesia is not only beneficial for one party, the government or citizens, but it is a solution for all [1]. Furthermore, Smart City can increase the efficiency and effectiveness of work, thus improving the quality of life for every element of the city [2]. As one of the largest cities in Indonesia, Medan has begun to develop a system for establishing the Medan Smart City—a city that performs at its best, effectively and efficiently, when managing resources [3]. A Smart city cannot exist without computers, the internet, and intranet networks for data transfer; therefore, security is a crucial issue and a must-have for its establishment [4]. This research aims to build smart security capable of automation data security with a combination of machine learning and cryptography.

The Naive Bayes Classifier method is one of the algorithms in classification techniques that use probability and statistics presented by the English scientist Thomas Bayes, which predicts the likelihood of the future based on past experiences, thus known as Bayes' Theorem [5]. Some studies have shown the feasibility of this algorithm in building smart-system, such as the intelligent system for student personality classification [6], the system for NPC braking decisions in a racing game [7], and the new student admission recommendation system [8]. We choose the Naive Bayes algorithm for the machine learning method, using these studies as a reference in building smart security.

The Rivest-Shamir-Adleman (RSA) algorithm is a cryptographic method with a high level of security because it uses a combination of the results of two prime numbers as the key [9]. The security of the RSA algorithm lies in the difficulty of factoring prime numbers in the formation of the key, so as long as the value of the prime number factor is unknown, the data will remain safe [10]. Recent studies have proven the robustness of the RSA algorithm in securing data, such as study A, study B, and study C.

In this research, we choose the combination of Naive Bayes and the RSA algorithms to build a smart-security system based on the data obtained from PEMKO Medan. The Naive Bayes algorithm will function as the data security level determiner for the given dataset. We evaluate the model performance using the 10-fold cross-validation to measure the accuracy, precision, and recall produced [11]. The RSA algorithm uses the security level output to choose the size of the key for the encryption and decryption process. Finally, the combination of both models yields a smart-security system worthy of implementation in a smart-city system [12].

Meanwhile, Indonesian Cloud Forum Advisor Mochammad James Falahuddin said the most crucial security issue for humans is not running applications. "You see the NSA leaked because Edward Snowden didn't talk. There is no doubt that the system was made by the NSA," he said [13]

II. METHODS

A. Naïve Bayes Classifier

In contrast to iterative iteration principles, Naive Bayes applies the Maximum Likelihood principle throughout the training process, which is more effective [14]. The application of Bayes' theorem allows the Naive Bayes model to classify data based on prior and posterior probability, combined with evidence to form the formula in equation (1) [15].

$$P(H|D) = \frac{P(D|H) * P(H)}{P(D)}$$
(1)

The explanation about equation (1): D is the data with an unknown class, H is the Hypothesis on D in a specific class, P(H|D) is the posterior probability (Probability of H based on condition D), P(D|H) is the prior probability (Probability of D based on condition Q), P(H) is the Probability of H, and P(D) is the Probability of D.

In this research, we use Naive Bayes as a classifier in determining the level of data security [16]. When selecting the encryption bit of the data security process, the RSA method uses the classification output as a reference, with the configuration shown in Table I.

TABLE I CONFIGURATION OF SECURITY LEVEL

Classification Output	RSA Key Size
Level 4	512 bit
Level 3	1024 bit
Level 2	2048 bit
Level 1	3072 bit

The security level configuration in Table I is the base for the RSA algorithm to secure the data. When the output is a Level 1 security, the RSA algorithm will use a 512-bit key to encrypt and decrypt the data, a 1024-bit key for Level 2, a 2048-bit key for Level 3, and a 3072-bit key for Level 4 [17].

B. Rivest-Shamir-Adleman

The size of the key, when used with the RSA algorithm for encryption, defines the output's level of security; the larger the size of the key, the more secure the data [18]. The RSA key generation uses several parameters, such as p (the first prime number), q (the second prime number), n (the product of p and q), e (the public exponent), and d (the secret private exponent) [19]. All these parameters combined produced a formula for RSA encryption and decryption, as shown in equations (2) and (3) [20].

$$Encryption(n) = n^e \mod(N)$$
(2)

$$Decryption(n) = c^d mod(N)$$
(3)

We use the RSA algorithm to produce a model for securing the dataset based on the security level generated from the Naive Bayes algorithm.

C. Dataset

We collected the personnel dataset used for this study from PEMKO Medan, consisting of 391 data. Table II shows the sample from the raw data we obtained. Out of these 391 data, we use 305 data as the training data and 87 as the testing data. The training data will be used to train the model to classify the security level, while the testing data for implementing the model.

TABLE II SAMPLES OF RAW DATA

R	YS	YB	G	J	SL
IV C	2017	1964	L	Expert Staff	1
IV B	2022	1979	L	Secretary	Ι
III D	2021	1984	Р	Vice Director	II
IV A	2020	1984	Р	Head of Division	II
III C	2019	1990	L	Secretary	III
IV A	2016	1972	L	Head of Division	III
III C	2018	1979	L	Village Chief	IV
III C	2019	1977	L	Head of Sub-Division	IV
NT D	D I MG	37 6	a .	VD V CD' I C C	1 7

Notes: R = Rank, YS = Year of Service, YB = Year of Birth, G = Gender, J = Jobs, SL = Security Level

We normalized the data to ease the classification process by changing the data value into a numerical value. Table III shows the normalization configuration, and Table IV shows the results.

TABLE III NORMALIZATION CONFIGURATION

Category	Old Value	New Value
	III A	1
	III B	2
	III C	3
Rank	III D	4
	IV A	5
	IV B	6
	IV C	7
Year of Service	Year Number	2022 – Year Number
Year of Birth	Year Number	2022 – Year Number
Candan	L	1
Gender	Р	0
	Village Chief,	1
	Sub District Head	1
	Secretary Assistant,	r
	Assistant Inspector	2
	Secretary,	
	Expert Staff,	3
	Inspector	
Iobs	Head of Sub-Division,	
3005	Head of Section,	
	Head of Agency,	4
	Head of Unit,	
	Head of Division	
	Vice Director,	
	Head of Department,	5
	CEO,	5
	Director	1.0.0.1
Security Level	I, II, III, IV	1, 2, 3, 4

TABLE IV SAMPLES OF NORMALIZATION

R	YS	YB	G	J	SL
7	5	58	1	3	1
6	0	43	1	3	1
4	1	38	0	5	2
3	3	1	1	3	3
5	6	2	1	4	3
5	4	44	0	3	3
3	4	43	1	1	4
3	3	45	1	4	4

D. Model

First, we use the Naive Bayes algorithm to classify the normalized dataset to produce the security level. Then, we use the security level configuration to determine the bit for the RSA key and secure the dataset using encryption. To decrypt the data in the dataset, the user must first know the security level to determine the bit for the RSA key, thus improving the data security. Figure 1 shows the complete architecture of the smart-security system used in this research.

Fig. 1 Model Architecture

For future implementation in the Smart City system, especially in PEMKO Medan, we propose the system architecture as shown in Figure 2.

Fig. 2 Proposed System Model

In Figure 2 above, we propose an integrated system between the model and the Smart City system used by PEMKO Medan. We divide the system into two parts, namely the Smart City and Smart Security systems. The Smart City system accesses personal data from PEMKO Medan, which is connected to an Ubuntu server with specifications as shown in Figure 2. The Smart City system accesses personal data from PEMKO Medan, which is connected to an Ubuntu server with specifications as shown in Figure 2. At the same time, the Smart Security system accesses the training dataset to build the model with the help of Jupyter Notebook, with the help of Scikit-learn, utilizing sklearn.naive_bayes and Crypto.PublicKey.RSA libraries. The model built can be implemented using the PyTorch framework, resulting in a Security application. The previous Smart City system is then connected to the Security application to secure personal data when accessed by users.

E. Evaluation

In this study, we evaluate the classification outcomes using the 10-fold and 20-fold cross-validation. We use the accuracy, precision, and recall values to rank the model's performance, using formulas as shown in equations (4) to (6) [21].

$$Accuracy = \frac{TP+TN}{Predicted+Actual} = \frac{TP+TN}{TP+TN+FP+FN}$$
(4)

$$Precision = \frac{TP}{Positive \ Predicted} = \frac{TP}{TP+FP}$$
(5)

$$Recall = \frac{TP}{Negative \ Predicted} = \frac{TP}{TP+FN} \tag{6}$$

Using equations (4) to (6), we calculate the accuracy, precision, and recall values from the model's classification result. These values are used to determine whether the model's performance is good enough with a standard of 85%.

III. RESULTS

The first result from the classification process produced a confusion matrix, as shown in Table V. This table displays the prediction result from the model using the Naive Bayes algorithm in classifying the personnel dataset.

TABLE V TRAINING DATA CLASSIFICATION RESULT

Astrol	Positive Prediction				
Actual	1	2	3	4	
1	26	3	0	0	
2	1	25	9	0	
3	0	2	7	5	
4	1	0	7	219	

We use equations (4) to (6) to analyze the model's performance by analyzing the accuracy, precision, and recall values, as shown in Table VI.

 TABLE VI

 EVALUATION FOR TRAINING DATA

 Accuracy
 Precision
 Recall

0.925538

0.908197

0.908197

From the result shown in Table VI, the model performance displays over 90% for each accuracy, precision, and recall value. This result shows that the model has a good performance in the training classification and can be used for the next step, which is classifying the testing data for the security level of the RSA encryption.

In the second step, we use the testing data to produce the security-level classification result for the encryption process. Table VII shows the confusion matrix for the classification result of the testing data.

TABLE VII TESTING DATA CLASSIFICATION RESULT

Actual	Positive Prediction			
	1	2	3	4
1	2	2	0	0
2	1	28	6	0
3	0	0	10	0
4	0	1	2	35

We use equations (4) to (6) to analyze the model's performance by analyzing the accuracy, precision, and recall values, as shown in Table VIII.

TABLE VIII EVALUATION FOR TESTING DATA

Accuracy	Precision	Recall
0.862	0.895	0.862

From the result shown in Table VIII, the model performance displays over 86% for each accuracy, precision, and recall value. This result shows that the model has a good performance in the testing classification and can be used for the next step, which is the encryption with the RSA algorithm.

In this step, we pick each data corresponding to the security level from the testing data, as shown in Table IX. We choose the first testing data (with Security Level = 3), the second data (Security Level = 1), the sixth data (Security Level = 2), and the tenth data (Security Level = 4).

TABLE IX DATA FOR RSA ENCRYPTION PROCESS

Data	R	YS	YB	G	J	SL
1 st	III D	2021	1985	L	Head of Division	3
2 nd	III D	2015	1983	L	Head of Division	1
6 th	III D	2021	1979	L	Head of Division	2
10 th	IV A	2019	1972	L	Head of Division	4

With the security level from Table IX, we encrypt the data with the corresponding keys, with the result shown in Table X for the 1st data, Table XI for the 2nd data, Table XII for the 6th data, and Table XIII for the 10th data.

TABLE X

ENCRYPTION RESULT FOR 1ST DATA

Data	Encryption Result
R	kchvnHha0V9nPw2CpPSpN5SdhYA76pP+VevzeJIq1A kiFFUY4t8MaKltcLKYLxJLlNZLi8mkZ6jXLzOwIyA ZLWCMOQTGAA5nGqpTELEQwWRwaS2PwpfOUp 7dN2j3xc10/ZdJN6teOqXD5dmvOPoHBXFwJqeZm3 ESQH+BAxUT/ao=
YS	IdAwxz3V0C7PtfZ8xAkL5pblkd7bkNQHIa9XG3nfzB FC8rKnbAYW5P1MhjgeSwP2Trl2txfJbWifdgZ0o5dUt DeBz4DKvLNWuGmZ5pvKyvEYtXhQsexVV4oZYE NBU/2mEmgHegztsa63IwvdYD2Zw0/Z4maBYHsPxP 1vRA6c7o4=
YB	COpsdxlcjj/1SZCfDjz/p1T88Ekzgf52W4k9RApCe94M w4/zlAhOR1/0S+n6vAGpizifOxiveanPbfK6QbxVGK WU/mpx2a7dJ4pkKgaqgqSnlEeolscxYUoqljsc0wNdaH z+X0jtWzL+D8hTgxyWO/vfz6VYGpKkU7rmkf5NF3k =
G	jvXzHtY9Lt3J0M/sXNsdfac2XR7Uf9v9lA1kgXvACK/ Qoz3HE9qN88D0tBr6mNGnSRTW6S2/vhoCkM9I5Q qKX4dW5Qi7WMoq6POyC5wibuqlvSEzqpuyVIGINh

	+4Bjq1ThKSpUZ/oBv0ZJZxkf3j7N2n7x5FZ9cOp98B8
	FnvzQw=
	Swx8HTHCVExT7qjHJrLVuY1WB7vaRn3+tXRd1pFK
	O0PuRzbGkgdQ+sxtdi7XdHvMEJhsU042PeEcKSN5R
J	CO8IkEW8boRfoi/6PhRSPgHXtB9y+7RpbyviZkpdhak
	EQIAHRxRSKKCqDLcY4O3j8wGMUeZG8czCAjofC
	XfL24GCnQ=

TABLE XI ENCRYPTION RESULT FOR 2ND DATA

Data	Encryption Result
	RtWug2tNWC0n10ZWO+A55LJII12MhN5nYVqr5sV
	RTI2dMoCvD7a0uS+z0j10bO+HoG9lAsN2o7eukB8sd
	q+3ugJHLvPGH+1zV0xbFuEaJq97VHlq++yddG67yne
	FWTEa3eBxxw6F+NCHJQOZ4TK/YMVPjWDICRBG
	CSX5Ym+tN5raoEpWQRZxw8SRzEYWjQScQQ4Xo/r
	BeBi95YqxJCeSeEajkxN1JZmTiUZwSVRYEMDmG3
R	3GSAOO8nnq5XKgvL+jx2UStaB4yWeH2b/cBm2TQg
	hFOVr1Gc71kltbZQwOGN1AaZBY9Y0zDGL1JwX4E
	cxiKFSDDzdPD2CxPPq41aH2qjH5BSmEncOTQJ0IWI
	qZxJXoF0PXmQKNYdD5ZHzHj2hpA5vz2ToDgfweB
	d+e+OrapmLosgM/2p/EWiZWkiRFh+5CVsEZDyLtHL
	qzOokV8zfBaeK//Za9A/PFJJIx5TUbttQmCSWmxuq2
	XMc5PErFanHXB1a4UDd1Kyke41/rbGMO
	gwn5IsHtz39nFQB+epng7ZvN43+wELrv4EhI8UcwbH
	R6J7HM2TYwdolggp4FOhackNmdAtNZRtS8f2i/Nu1
	OOx3PXCPJ+vQXGCD37NmEIzT+8dkfi0BmJKMzU
	Nozkvixjidpw2EHmAfe2boGGJhsHcHz4Tn/4helxBMN
	pRcZNP8rmbuz9K9PDAaYUwJIx4tfib/QdRXd9H/sOe
NO	nocyq9j/Elg//zhsdLUoWpucr12dS2F9tqUkB//CbSzJ0X
ŶS	QPpS+7F30VPbMRy+5Q2oZ93BxvHPjKh5gE95Fjjl9c
	X/B5Zy+q1th w4wNqc3aN4r+irrwzsNOSv5ErKH+us
	pgHvZHIH VILEaBKnI W45tmUUSUpYgPHCIIKqKn/
	LIIDVG1C0JIULASIVNWDe3/OIII0PuxSEUgwibZ1
	WgK1K4IIIFA8WIFI0P20N+9gCQ887II41A844ISFUKD
	Aw J9052EL4JJ4C5CVKF2JlubqGkgIIIUA01wkX w y2lb1
	V4Igt5/IAKDy26FillE
	nu1ZXne0Dj12VbVn0Edzxq0JpDn15XUuWknZ3+EirKV
	I mLm//I9KnWZ/N/WW32UI/9BXLKaJD4JIZK/5512
	aWk5hM23z1DviLLIOcViWwUsel1KMVCaBVSTE
	XRW72/IHpatOpttyefTivei5S±/aXInIEb7VbbkGVICoS
	NDotcgRBII/oodRmOoxU+KpI6Sw4mMAsaai7IS24N
YB	hktnk3tY1HGIXcMIIA/5z9iZgII EtnkhMz33eCX2kKh
15	TOgk1kd8ZiFk4f2C+SM7kS5Ez7a6ILkKxA7iOrgI8ff4
	sAeeFfiGooziDsM/ZKCYr2BuDoJaArfoGrYkJNif/mW
	tgipJT/zEniBA43ZJTFB4OJrWPR9nXXtf/Pn232AGFC
	/rnnDhW7ytRIccVpcoIVhf8nApjPXcpAeOGXNtHbnK
	LG6X5t4+jYddrftnt7Nhk2naVqtU+kEOLb6tzvQ57fs98
	D/OQ
	ZyBH7NUiqA7+rQg+b6Y9GH4GNSeuS43FCiq6fUAF
	E6vP+7v0UhwJH86RTotmdpbjieh0ZjQRDQH3N7qNtI
	4L1y5YzqI+H4eCWUUoljUHMV3UvW02bBq/hpQLJ
	nlyZUrK0t0d3fREXWqbu3uq8EJE0RrC/XPbHApiFQN
	NYqVA0vSbQqmgOJUcWmE7u6r2JuximcZ2+Vqrffc
	XDMwmQuQao50N5LPzIruxNVRvw4B3fbxRWmA9F
G	0HVs3IhURUKuXbUJAeVAvncL3WHEJ8TgzD5OJM
	Dk8t6u3BTBVcNmlW+qN6j/lRoqLCClVV0Zeja1Xwg
	LzE8GbBEhSAlIjVCfLQ6iCxckpvXaLT2Et6CQSFWb
	2J4SsIfZWNUySzWOhdFbnAEjW7mavqaXyGe5+6cS
	bN7iisLXap8YcwyEhX6NgrU2ErVRs/hvHojM0V+K4I
	T68dr50fTvdl3JvHf6gO59PHOxIxaFsx0O3ji9qQY8zq/j
	NDP+KohnZjwFQstBGaCLRjV
	aaBgOocsBVAJOA27YMc111BH+m3/QH2KUF8GfQ2
	orsitiAr0MzIRZibvCImnpsW8RD2NApVD4Onuq48w4
J	ZDNI&DHN V MIYUKYPIKOIYFeGHSPQbU/FDYSXYA
	51+9UNerpatu4/JpisWk10u02Y1/nC4P1/TA0q/tzGhvEfr
	akiA i ZAUBIOI FZVEI I INdSYWG6LAd3ch/ew KYUgA/
	OPymd5Y0iVanrDeT7cU6EnKtMD7W0w9Mc/WMwD
	$\int OI Y M O O O O O O O O O O O O O O O O O O$

uq3tc4OhVFZGDVcy6dBA69lSt8/ppFUK8AcZPxd2M
Rxqq3Q5+FZlHFkPQYSbGBRQAFhv9JdV/ffTJAJPN
Rf3RLq+gfwMsotPEsyh4OT50K8vu2YiR/m4TtAyaXn
EIk/F3co9jeYH1Zn4VFBKRNOwesTs4iS2bx1Zudz9xJ
Yd7kSkBJu7BTN2D5XZi67dNb1AiVf2efyGwbGRFx9
3KZU44JkvW1nNiRbsN

TABLE XII ENCRYPTION RESULT FOR 6^{TH} DATA

Data	Encryption Result
R	ARA5pTTuNncva7QSfNnst4/WN+NPKnONUiotm9yO yTl5bme586ErV/C2pPV9AbTCClTVWmTKm98dtS6z TBVBNrvORq6ARSblQumARVf6va50fNNO3yeM2Is 1kbkROE8y6H+f0BmRNcsoGJ5b/ySVFQvA5gAgFAn gfodQvCnpUc9eEB8kPBBlFnXHoamt0vDCn3/aUPET bVljmXPfHLQLnBtN+0IEV8wjwqx0fHqzSGkvPpqdjh WHrD/tqlveOLr4gjuByHTf58gdB51Wkj5xOvmHgeod Ykc+jfRoNzoAWddXE7J4ITTwP7tXicRUCi5GUVNk 1hvbz5GVj+n262VJEQ==
YS	aNhupyfv6y00wpowT/LmkgezL6CS7eNs6ClP4RKLab bDUG51s4nAvWEOh3I3VrVp7bp87MNORN5dyh/Kfs EBIGbwTlmhtdMTiKbYDxVWVmbxN6xJjU5q8W+P+ PskxJP5Y2yWPPdKMjhNHNXJ1VDor4Bsb6+xjWPV Dnfed2PNvQ67nz2pUFm7JNjDM1zdVcDTuHbJsT+zo fHc8QjpGGclZ9w+TjFFxo059oGuHSSUnOtcLbmaYy yZrP7sraFJFQN85YfXZSdlwk1fuKtA2/VpzZx3Q+KS ZuJ9eecNZB5ruT6lPMwvPY8eUCYDl9GIo28/1Wb5b VxJ/b5yRz3sHTMgzg==
YB	wEyZLzZYPACPwKaf/uYyZQUAPLn8OWQ/jha4GE/ Eu6b7MUw3bNjIB9HmVYUlvIZ5s90y9DLdz2tCHc67 RHFEIcW1b8PMXU7Dxxya+TKmhTBzvkenQ6SgLop 9zWTjjcFqC+THm4JyJq1MjgFWiYK9P4J5Ju/BjkwLH 7E3EIxhiTy+dDr/QvOfOPZd7NIOB9gX3hxYCG4Bihq /Kd9/ALPJNwlgDID7e1tIUX5MjSjjNuyDEpT/j5upxtA 2sQo6Fhtrh0TrxkA1an1gp1jJNmLS4SVBeWq1DljMn AljGXLcDrcT6TTT1aYXxGjjyZPyCBVG1ZGT6FGBP UCfpQ10KSicFw==
G	gK5Re58dHC8RYjyPhfKe1kG2jB5mz0cafn9K4wC+C 1Eo9VJqS11halTkLTbDvnWPPQdMtxwkYm9Vmt+exs N2Q2J1SXu7h6MksYRHWfFW1bUhJ11mdkqnqd1SSj 07yzD9LmCcCGx38mJCsV5YCIeZn21fNpSxNUI3tp/v xG2iMkO8IDAYgNz+wGv3G7shxnH5WjcH0P4Rp2s YVpW4DcZn6TalF1FMnGeppY14E81f57jdnemtkV9G Vs5k5nzQIJuN8ln5HxzPMLFuNzb6naPXnXJOfS6h+g 33VhAWIG+83HJhnRMOG0FSl4bvp4qfiE3hDZcs+ryu 4dP/YCR6d9i7rQ==
J	NbmHp3zvms6WRnRuwMrFo0w2RRTA2bOq3GXJw Zn0JYz9IgI3D9DeBJDTR+FWKhW45GOgLf45TFNna huBZXsVQ0Mi2gj2jK9JNsAKAM9ltf/xr/BvS9fuqu99c hsGKpg4jiIZoGxxFpSHb8lhT8E041Dy+XLUUtzJvbmj qqfnPQyrIyENBvRPwL6akx29hTJoZ2ARW8wvjjoO eFgIeqPbpxUhePWN38lj6MOANo2PrBus1kKGeGeIIn y6PEltsJNkI9FYJ8rXNZB5HmuN0HtyjSaEHeaZQz5h wZ00Fp66jmqhKljHyfrzuRR9KPJzp/1H2BFxW/URi/D wE5RnMZ97g==

TABLE XIII ENCRYPTION RESULT FOR 10[™] DATA

Data	Encryption Result
R	KOj94xtQX3cxNx2XKXxzWXLKAuFBG1m68O79w/
	sGyL/Q==
YS	bCGRNY6H8/aFSu5c7M0P1DMIJS0oNUaB2dvwpAB GmJIf9KLA6Kd02BTMHbC1Bt21fN6rnl6uiERgzVcU koYXyA==
YB	QIRzd0CSTTKrvjbXuwEwKtfY7OCmlPV52/aqbxVwI 9n43urqYG7CZfoS90DUW3byY6h8qCdtuksdewEfGC AH7w==

G	c3y41Fnt/8DRYN5m9mNWQDh1CwI/2oEQi8chkjdmk AaKxW2gMH50wvGXUJ+Ald647ynutrs2ixI8wb3k1R3 Psg==
J	mDgRpQEVpBy8BAAOjmPnDJtuAkn6/2Y1o2sM43ry F5zG4HCa6deVycwiIXUA3KgyXuB9b0XgnC7+cKMz UIbECg==

From the result shown in Table X to Table XIII, we found that the RSA model managed to secure the data correctly using the security level from Table IX. Comparing each category in the dataset, we found the result produce different encryption results, especially in terms of the length.

IV. CONCLUSIONS

The results from this research show that using a machine learning method, especially the Naive Bayes algorithm, its feasible to build a smart-security system. By classifying the data in the dataset, we can create a security level to determine the importance of each data. This security level allows the cryptography algorithm, in this case, the RSA algorithm, to encrypt each data with variants of protection level. The RSA algorithm encryption results display the difference in cipher text produced using the security level. One advantage of employing this method is that by using more than one key size, the protection level of the data will adjust according to the data's significance. From the classification result, we conclude that the Naive Bayes algorithm is compatible with building the smart-security system. The accuracy, precision, and recall values show that all values exceed 90%. The combination of the Naive Bayes and the RSA algorithms shows the feasibility of creating an intelligent and automatic system for protecting the data stored in a smart city server.

REFERENCES

[1] I. Widiyastuti, ST., MT, D. Nupikso, N. A. Putra, and V. A. Intanny, "SMART SUSTAINABLE CITY FRAMEWORK: THE SUSTAINABLE AND INTEGRATIVE SMART CITY PROPOSED MODEL," *J. PIKOM* (*Penelitian Komun. dan Pembangunan*), vol. 22, no. 1, p. 13, 2021

[2] M. Iqbal, "Smart City in Practice: Learn from Taipei City," J. Gov. Public Policy, vol. 8, no. 1, pp. 50–59, 2021

[3] A. Suhendra and A. H. Ginting, "Local Government Policy in Building Smart City in Medan City," *Matra Pembaruan*, vol. 2, no. 3, pp. 185–195, 2018

[4] V. A. Molchanova, "Smart city in the global system of developmental governance," *E3S Web Conf.*, vol. 224, no. December 2016, 2020

[5] I. B. A. Peling, I. N. Arnawan, I. P. A. Arthawan, and I. G. N. Janardana, "Implementation of Data Mining To Predict Period of Students Study Using Naive Bayes Algorithm," *Int. J. Eng. Emerg. Technol.*, vol. 2, no. 1, p. 53, 2017

[6] D. Fahrudy *et al.*, "Intelligent System for Classification of Student Personality," vol. 5, no. 1, pp. 1–9, 2022

[7] S. W. Sanjaya, A. Muhammad Aminul, and T. Afirianto, "Application of Naïve Bayes for NPC Braking Decision in Racing Game," *J. Pengemb. Teknol. Inf. Dan Ilmu Komput.*, vol. 3, no. 4, pp. 3252–3257, 2019.

[8] A. Suryadi and E. Harahap, "New Student Admission Recommendation System Using Naive Bayes Classifier at the Indonesian Institute of Education," *Joutica*, vol. 3, no. 2, p. 171, 2018,

[9] M. Jannah, B. Surarso, and Sutimin, "A combination of Rivest Shamir Adlemann (RSA) and Affine Cipher method on improvement of the effectiveness and security of text message," *J. Phys. Conf. Ser.*, vol. 1217, no. 1, 2019

[10] I. A. Achmad Wahyu Hidayat, Riza Arifudin, "Implementation of RSA and RSA-CRT Algorithms for Comparison of Encryption and Decryption

Time in Android-based Instant Message Applications," J. Adv. Inf. Syst. Technol., vol. 2, no. 2, pp. 1–10, 2020, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/jaist/article/view/44302.

[11] M. Ibtasam, "Accuracy Measurements and Decision Making by NaÃ-ve Bayes and Forward Chaining Method to Identify the Malnutrition Causes and Symptoms," *Sci. J. Informatics*, vol. 8, no. 2, pp. 320–324, 2021

[12] R. Darari, E. Winarko, and A. Damayanti, "Encryption and Decryption Application on Images with Hybrid Algorithm Vigenere and RSA," *Contemp. Math. Appl.*, vol. 2, no. 2, p. 109, 2020

[13] D. Ayu Suci Ilhami, "Data Privacy and Cybersecurity in Smart-City: A Literature Review," *J. Sains, Nalar, dan Apl. Teknol. Inf.*, vol. 2, pp. 2807– 5935, 2022, [Online]. Available: https://journal.uii.ac.id/jurnalsnati/article/view/23908/14153.

[14] Heliyanti Susana, "Application of Naive Bayes Classification Method Model on Internet Access Usage," *J. Ris. Sist. Inf. dan Teknol. Inf.*, vol. 4, no. 1, pp. 1–8, 2022

[15] K. L. Kohsasih and Z. Situmorang, "Analisis Perbandingan Algoritma C4.5 Dan Naïve Bayes Dalam Memprediksi Penyakit Cerebrovascular," *J. Inform.*, vol. 9, no. 1, pp. 13–17, 2022.

[16] R. Firmansyah, E. Utami, and E. Pramono, "Evaluation of Naive Bayes, Random Forest and Stochastic Gradient Boosting Algorithm on DDoS Attack Detection," pp. 1–6, 2022.

[17] R. Abid *et al.*, "An optimised homomorphic CRT-RSA algorithm for secure and efficient communication," *Pers. Ubiquitous Comput.*, 2021

[18] H. T. Sihotang, S. Efendi, E. M. Zamzami, and H. Mawengkang, "Design and Implementation of Rivest Shamir Adleman's (RSA) Cryptography Algorithm in Text File Data Security," *J. Phys. Conf. Ser.*, vol. 1641, no. 1, 2020

[19] K. Suresh, R. Pal, and S. R. Balasundaram, "Two-factor-based RSA key generation from fingerprint biometrics and password for secure communication," *Complex Intell. Syst.*, vol. 8, no. 4, pp. 3247–3261, 2022

[20] J. P. Sikumbang, "Combination of Shamir Adleman's Elgamal Rivest Algorithm and Least Significant Bit in Securing Files," *Infokum*, vol. 10, no. 1, pp. 370–379, 2021, [Online]. Available: http://seaninstitute.org/infor/index.php/infokum/article/view/317%0Ahttp://se aninstitute.org/infor/index.php/infokum/article/download/317/251.

[21] D. Pardede, I. Firmansyah, M. Handayani, M. Riandini, and R. Rosnelly, "Comparison Of Multilayer Perceptron's Activation And Optimization Functions In Classification Of Covid-19 Patients," *JURTEKSI (Jurnal Teknol. dan Sist. Informasi)*, vol. 8, no. 3, pp. 271–278, Aug. 2022.